The isometric mid-thigh pull: a review and methodology – Part 2

By Stuart N Guppy, Claire J Brady, Paul Comfort, and G Gregory Haff,

1Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
2Department of Physical Education & Sports Sciences, University of Limerick, Limerick
3Directorate of Sport, Exercise and Physiotherapy, University of Salford

ABSTRACT

The isometric mid-thigh pull (IMTP) is a commonly used test for the assessment of skeletal muscle function in athletes from a wide variety of sports. Although force-generating capacity and rate of force development measured in the IMTP are related to dynamic athletic performance measures, the testing and analysis procedures used can have adverse effects on the magnitude and reliability of the force-time characteristics produced. As such, this review focuses on the correct testing and analysis methodologies to use during IMTP testing.

Introduction

The first part of this two-part review of the literature relating to the isometric mid-thigh pull (IMTP) examined the history of the test, along with the relationships between force-time characteristics expressed during the IMTP and common markers of athletic performance. When compared to common laboratory-based isometric testing modalities, the force-time characteristics expressed in the IMTP typically display stronger relationships to dynamic measures of maximum strength and explosive dynamic movements such as sprinting, jumping, and change of direction. These relationships, however, are reliant on the use of the correct testing methodology, particularly in relation to both the body posture and barbell positions used, along with the reliability of the data analysis procedures subsequently used.

Therefore, the aim of Part 2 of this review is to examine the existing scientific literature in order to better understand the experimental protocols used to perform the IMTP and which methodologies are used in the subsequent data analysis procedures. It is hoped that, by establishing a better understanding of the testing and analysis procedures, practical guidelines can be established that will allow practitioners to employ the test in a reliable and repeatable manner in order to optimise the regular monitoring of athletes.

EQUIPMENT REQUIREMENTS FOR THE IMTP

The IMTP was originally performed within a custom-designed power rack (Sorinex, Irmo, SC), specifically constructed for the performance of both the isometric squat (ISqT) and the IMTP. This rack allowed the adjustment of the immovable barbell (ie, cold rolled steel) in a step-wise manner to any height above a single force plate (Advanced Mechanical Technologies, Newton, MA) through a combination of pins and hydraulic jacks. More recently, the IMTP has been performed utilising various iterations of commercially available portable systems or by fixing an Olympic barbell horizontally across the safety pins of a squat rack. Furthermore, as the test has evolved it has recently been performed with the use of dual force plates allowing the assessment of potential differences in force-producing asymmetries of the lower body to be identified.

Within the scientific literature utilising the IMTP, there have been various force-plates used, often sampling with differing sampling frequencies. Typically, the sampling frequency used for collecting force time curve data during the IMTP has been recommended to be a minimum of 1000 Hz. McMaster et al recommend the use of a sampling rate of between 1000-2500 Hz for both the IMTP and ISqT, based upon the Nyquist sampling theorem. This theorem states that a sampling frequency of double the highest frequency contained in the signal is required to ensure none of the original analog signal is lost. Sampling below this critical frequency therefore increases the likelihood of important data contained within the original analog signal being lost due to aliasing occurring during the conversion to...
On many occasions throughout the scientific literature, however, sampling rates of less than 1000 Hz, such as 500 Hz, and 600 Hz, have been used. Recently, Dos Santos et al examined the effect of different sampling rates on the force-time curve characteristics derived during performance of the IMTP, with force-time data collected at 2000 Hz and subsequently down-sampled to 1500, 1000, and 500 Hz during further analysis. No significant differences were found between measures of peak force (PF), time-specific force (100, 150, 200 ms) and RFD time-bands (0-100, 0-150, 0-200 ms) regardless of sampling frequency, along with high reliability in each force-time characteristic measured at each frequency. However, as Dos Santos et al did not examine the effect of sampling rate upon early phases (<100 ms) of RFD, it is still unclear what, if any, effect sampling below 1000 Hz has upon these RFD values. As such, although these data suggest that sampling rates of as low as 500 Hz may be utilised during performance of the IMTP, if a force plate or combination of multiple force plates with a sampling frequency of greater than 1000 Hz are available, then they should be preferentially used, particularly when accurate measurement of time-specific force and RFD outputs during the early stages of force application (<100 ms) are of concern or synchronisation with other measurement devices is required.

EQUIPMENT SET-UP AND PRE-TRIAL INSTRUCTIONS

When undertaking the IMTP, either a customised power rack that allows for the movement of the barbell to any height, or a portable isometric rack that enables stepwise alterations in barbell height, should be used. These systems should allow minimal compliance of both the barbell and power rack, therefore reducing the risk of alterations in joint angles upon force application adversely affecting the results. Previous research has demonstrated that instructing the athlete to produce force as hard and as fast as possible results in superior PF and RFD values when compared to simply instructing the athlete to produce force as hard as possible. Specific to the IMTP, Halperin et al demonstrated the use of an externally focused instruction to ‘push the ground as hard and as fast as you possibly can’ results in significantly greater PF values when compared to providing an internally focused instruction to ‘contract your leg muscles as hard and as fast as possible’. Therefore, when performing the IMTP, athletes should be instructed to ‘pull as hard and as fast as possible’, while ‘pushing against the ground (ie, the force platform) as hard and fast as possible’ which is the pre-test instruction consistently used throughout the literature.

BARBELL POSITION AND BODY POSTURE

Within the literature, there have been several barbell and body positions utilised during performance of the IMTP. The position originally described by Haff et al and subsequently extensively utilised throughout the scientific literature is identical to the position found at the initiation of the second pull of the clean. Haff et al confirmed this position matches the one found during dynamic performance of the clean using two-dimensional video analysis. Although the origins of the IMTP test are centred on the second pull position, Comfort et al, McGuigan et al, McGuigan and Winchester, and Wang et al suggest the use of a position at the mid-point between the iliac crest and the middle of the patella. Comfort et al reported that provided this barbell position was maintained throughout all trials, no significant differences between force-time characteristics occurred, regardless of changes in either knee- or hip-angle.

Beckham et al, however, demonstrated that in powerlifters a higher barbell position, similar to that originally described by Haff et al, produces significantly greater PF than a barbell position just above the knee with a concurrent ‘bent over’ torso position, similar to the position reported by McGuigan et al. Similarly, Beckham et al recently reported that weightlifters produce greater PF in the position mimicking that of the second pull of the clean when compared to the position suggested by both Comfort et al and Wang et al. Interestingly, Beckham et al also reported that some participants were physically unable to attain the desired body posture using the lower ‘mid-thigh’ barbell position or substantially shifted their torso position further upright upon trial initiation in a manner similar to the repositioning of an athletes torso during the transition from the first to second pull of the clean. As such, athletes should be monitored for changes in joint angles during performance of the IMTP as this has the potential to adversely affect the force-time characteristics produced.

Therefore, based upon the contemporary body of scientific knowledge the starting position of the IMTP should mimic the position achieved at the initiation of the second pull during the clean. Generally, in this body posture the barbell is positioned across the upper portion of the thigh, immediately inferior to the pelvis. Exact hip, knee angle or barbell placements are difficult to recommend as an individual’s anthropometrics will exert a large impact on their ideal position. However, when examining the scientific literature, the average knee angle will be approximately 130-145° whereas the hip angle will be approximately 140-145°. Some literature has reported the use of a 155-175° hip angle; however, this angle describes the trunk angle relative to vertical, not the internal hip angle between the torso and the thigh. The use of a 175° hip angle results in a reclined torso position and adversely affects the force-time characteristics generated when compared to a hip-angle of 145°. Knee- and hip-angles used during testing should be verified and recorded with a hand-held or electronic goniometer and then maintained for all subsequent testing sessions. The athlete’s torso should be in an upright position, with the feet positioned roughly hip-width apart and with the same grip as that used during
the clean.6,23,24 As with the maintenance of joint angles between testing sessions, the grip width and foot position should be recorded and then maintained across all trials the individual performs in the IMTP to assist with inter-session reliability. These measurements should be performed during the familiarisation session prior to testing, allowing faster testing of large cohorts of athletes.

WARM-UP PROCEDURES
A short, approximately five-minute dynamic warm-up of general bodyweight movements such as lunges and squats should proceed the specific warm-up. The athlete(s) should then perform at least three sets of 3–5 reps of dynamic mid-thigh pulls (MTP) of increasing submaximal intensity. The load for these dynamic MTPs should be prescribed per percentages (40, 60, 80%) of the athlete’s established 1RM power clean10 or of a perceived/estimated maximum. Barbell height during dynamic MTPs should be the same as that used in isometric trials and measured during the familiarisation session undertaken prior to the testing. After the athlete has been positioned as previously described, two submaximal IMTP warm-up trials should be performed. The first should be performed at 50% of perceived maximum effort, with the second performed at 75% of perceived maximum effort.10,24,53 These warm-up efforts should be separated by one minute of rest.

If the athletes undertaking the IMTP are unfamiliar with the weightlifting movements, particularly those performed from the mid-thigh position, or are contraindicated from performing them, it is advised that strength and conditioning professionals proceed directly from the generalised dynamic warm-up to the specific warm-up of submaximal IMTP efforts of increasing perceived intensity.7,8

FAMILIARISATION AND TESTING PROCEDURES
Before undertaking testing in the IMTP, athletes should be familiarised with both the mechanics of the test and the procedures to be used. Although there is limited research on the number of familiarisation sessions required to negate the effects of the learning effect upon force output, it appears that a single session containing four submaximal trials is sufficient to optimise force outcomes, which is less than the six to ten submaximal trials required to optimise performance in the ISqT.18,42 However, there is no available literature on a definable number of sessions required to optimise RFD outcomes, which has been suggested to require substantial familiarisation.34 Similarly, the amount of familiarisation required to generate reliable IMP characteristics is currently unknown. As such, based on the existing literature, athletes should undertake a minimum of one familiarisation session prior to testing. Furthermore, if RFD or IMP characteristics are used to assess skeletal muscle function, additional familiarisation may be required to result in reliable values.

Prior to commencing the trial, the participants should be attached to the immovable barbell using weightlifting straps or a combination of weightlifting straps and athletic tape,23 after which

Figure 1. The correct IMTP starting position and common mistakes in the start position (a: The correct IMTP start position; b: correct barbell position with torso incorrectly bent forwards; c: barbell position too low and knees excessively bent; d: barbell position too low, knees excessively bent and torso excessively inclined)
the athlete should apply the minimum amount of pre-tension required to remove slack from the ‘system’.3,23 This stable amount of pre-tension should be established visually via observation of a stable force trace, maintained for a minimum of one second in the desired IMTP position. (See Figure 2).12 To ensure that only the minimum required pre-tension is applied, a one second weighing period in a relaxed posture should be performed immediately after the termination of the trial with only a 50-100 N tolerance between pre- and post-trial force values. Trials where this stable level of pre-tension is absent or there is a visible countermovement upon trial initiation should be excluded from subsequent analysis (See Figure 3).

Once this stable position has been established, the athlete should be given a countdown of ‘3, 2, 1, pull’, with instructions provided prior to the initiation of experimental trials to ‘pull as fast and as hard as possible’.23,25 Strong verbal encouragement should also be provided throughout the duration of the trial to ensure the athlete is providing maximal effort. Trials should be terminated after a five second window has elapsed or once the force trace visually declines, whichever occurs first. Three to five trials should be performed, with results averaged across the three trials with the greatest PF values.34 Trials with a greater than 250 N difference to the other trials should be excluded from subsequent analysis.

FORCE TIME CURVE ANALYSIS
Ideally after collection of IMTP trials, there should be minimal filtering applied to the signal, preventing the disruption of the baseline noise level of the signal or the shifting of time within the force signal.34 This is particularly important should the onset of IMTP trials be determined manually or if other testing modalities are concurrently utilised (EMG etc).34 However, should filtering be unavoidable due to excessive baseline noise, then a zero lag, low-amplitude digital filter such as a fourth-order Butterworth set at the highest available cut-off frequency should be used so as to minimise potential distortion of time within a trial.34 If filtering is utilised, practitioners should take into account the potential for underestimation of force-time characteristics when comparing filtered data to unfiltered data.14

DETERMINATION OF TRIAL ONSET
There are several methods utilised within the scientific literature to determine the onset of force application during an isometric trial, with either manual identification or an automated detection method being the most common.9,12 Traditionally, manual/visual identification of the onset of force application has been used in the IMTP3,6,23 and this method remains the gold standard against which automated onset detection methodologies are typically validated in both isometric and dynamic trials.38 Recently, however, Dos’Santos et al12 compared a number of onset thresholds in the analysis of force-time curves produced during the IMTP; they reported that utilising an onset threshold of five times the standard deviation of the mean force recorded during a one-second weighing period prior to trial initiation resulted in the most accurate determination of time-specific force and RFD values when compared to either percentages of body weight (2.5, 5, 10%) or an arbitrary 75 N rise above body weight.12 Therefore, although the visual identification of force onset is recommended due to its continuing status as the ‘gold standard’ method for force onset detection during isometric testing,38,34,54,55 it is
possible for practitioners to utilise either methodology to determine the onset of force application and obtain accurate force-time characteristics in the IMTP. It is, however, important that when visually identifying the onset of force application that the trial used contains no countermovement and a stable force trace prior to trial initiation. The absence of a stable pre-trial force trace or the presence of an observable countermovement prior to trial initiation may result in the incorrect determination of force onset and therefore incorrect calculation of time-dependent force-time characteristics.

FORCE MEASURES

Both peak and time-based measures of force can be determined during analysis of the force-time curves produced in the IMTP. The maximum force produced during the five second duration of the trial should be reported as the PF. Furthermore, force produced at 30, 50, 90, 100, 150, 200, and 250 ms meet the two-level reliability criteria (ICCα >0.70, CV <15%) set out by Haff et al23 and therefore can be used during analysis of the force-time curve. These force-time variables are also commonly expressed relative to the athlete’s body mass and/or allometrically scaled to remove

Table 1. Commonly quantified force characteristics during analysis of the force-time curve produced in the IMTP

<table>
<thead>
<tr>
<th>FORCE CHARACTERISTIC</th>
<th>ABBREVIATION</th>
<th>UNIT OF MEASURE</th>
<th>CALCULATED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute peak force</td>
<td>PF</td>
<td>N</td>
<td>PF recorded subtract body mass</td>
</tr>
<tr>
<td>Peak force relative to body mass</td>
<td>PFkg</td>
<td>N/kg</td>
<td>PF divided by body mass</td>
</tr>
<tr>
<td>Peak force allometrically scaled</td>
<td>PFa</td>
<td>N/kg^0.67</td>
<td>PF divided by body mass to the power of -0.67</td>
</tr>
</tbody>
</table>

Table 2. Commonly quantified rate of force development characteristics during analysis of the force-time curve produced in the IMTP

<table>
<thead>
<tr>
<th>RATE OF FORCE CHARACTERISTIC</th>
<th>ABBREVIATION</th>
<th>UNIT OF MEASURE</th>
<th>CALCULATED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of force development</td>
<td>RFD</td>
<td>N/s</td>
<td>Change in force / change in time</td>
</tr>
<tr>
<td>Average rate of force development</td>
<td>avgRFD</td>
<td>N/s</td>
<td>PF / time to PF from force onset</td>
</tr>
<tr>
<td>Peak rate of force development</td>
<td>pRFD</td>
<td>N/s</td>
<td>PF / sampling window</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME SPECIFIC RATE OF FORCE DEVELOPMENT</th>
<th>ABBREVIATION</th>
<th>UNIT OF MEASURE</th>
<th>CALCULATED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of force development 0-50ms</td>
<td>RFD_{0-50}</td>
<td>N/s</td>
<td>F_{50ms} / 50ms</td>
</tr>
<tr>
<td>Rate of force development 0-100ms</td>
<td>RFD_{0-100}</td>
<td>N/s</td>
<td>F_{100ms} / 100ms</td>
</tr>
<tr>
<td>Rate of force development 0-150ms</td>
<td>RFD_{0-150}</td>
<td>N/s</td>
<td>F_{150ms} / 150ms</td>
</tr>
<tr>
<td>Rate of force development 0-200ms</td>
<td>RFD_{0-200}</td>
<td>N/s</td>
<td>F_{200ms} / 200ms</td>
</tr>
<tr>
<td>Rate of force development 0-250ms</td>
<td>RFD_{0-250}</td>
<td>N/s</td>
<td>F_{250ms} / 250ms</td>
</tr>
<tr>
<td>Rate of force development 50-100ms</td>
<td>RFD_{50-100}</td>
<td>N/s</td>
<td></td>
</tr>
<tr>
<td>Rate of force development 100-200ms</td>
<td>RFD_{100-200}</td>
<td>N/s</td>
<td></td>
</tr>
<tr>
<td>Rate of force development 200-250ms</td>
<td>RFD_{200-250}</td>
<td>N/s</td>
<td></td>
</tr>
</tbody>
</table>
IMPRESSION 0-300ms IMP300ms Ns ∑F0-300ms x 300ms
IMPRESSION 0-200ms IMP200ms Ns ∑F0-200ms x 200ms
IMPRESSION 0-100ms IMP100ms Ns ∑F0-100ms x 100ms
IMPRESSION TOTAL IMPRESSION IMP n/S AVERAGE force x TIME
IMPRESSION CHARACTERISTIC ABBREVIATION UNIT OF MEASURE CALCULATED BY
Table 3. Commonly quantified impulse characteristics during analysis of the force-time curve produced in the IMTP

<table>
<thead>
<tr>
<th>IMPULSE CHARACTERISTIC</th>
<th>ABBREVIATION</th>
<th>UNIT OF MEASURE</th>
<th>CALCULATED BY AVERAGE FORCE X TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse 0-100ms</td>
<td>IMP100ms</td>
<td>Ns</td>
<td>∑F F1-100ms x 100ms</td>
</tr>
<tr>
<td>Impulse 0-200ms</td>
<td>IMP200ms</td>
<td>Ns</td>
<td>∑F F1-200ms x 200ms</td>
</tr>
<tr>
<td>Impulse 0-300ms</td>
<td>IMP300ms</td>
<td>Ns</td>
<td>∑F F1-300ms x 300ms</td>
</tr>
</tbody>
</table>
Table 4. Recommendations

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-up</td>
<td>Prior to testing a ~5-minute dynamic warm up should be performed. Following this, 3 sets of dynamic mid-thigh pulls for 3-5 reps of increasing submaximal intensity (40, 60, 80% 1RM power clean) should be performed. Following this, 2 IMTPs of increasing submaximal intensity (50, 75%) should be performed. If a 1RM power clean is not established, an estimated or perceived maximum can be used. If athletes are unfamiliar with weightlifting movements or are contraindicated from performing them, they should proceed straight from the general dynamic warm-up to the submaximal warm-up IMTPs.</td>
</tr>
<tr>
<td>Barbell position</td>
<td>The barbell position should match the position found at the initiation of the second pull of the clean.</td>
</tr>
<tr>
<td>Hip- and knee-angle</td>
<td>Hip- and knee-angles will depend upon individual anthropometrics – however, typically will fall within the range of 140-145° and 130-145° respectively. These should be measured and recorded for each athlete and then maintained throughout each testing session.</td>
</tr>
<tr>
<td>Grip and foot position</td>
<td>Both grip and foot position should be measured/recorded during dynamic performance of the clean and used throughout all IMTP testing.</td>
</tr>
<tr>
<td>Equipment requirements</td>
<td>A force plate with a sampling rate of 1000Hz should be preferentially used to avoid signal aliasing and should be positioned below either a custom or portable IMTP rig that allows no movement of the barbell. The barbell should also be able to be adjusted to any height above the force plate.</td>
</tr>
<tr>
<td>Filtering of data</td>
<td>Data should preferably be left unfiltered, however, if filtering is unavoidable due to excessive signal noise: a low pass filter such as a 4th order Butterworth should be used.</td>
</tr>
<tr>
<td>Analysis of force characteristics</td>
<td>Both peak and time-specific force values are a reliable measure of force-generating capacity.</td>
</tr>
<tr>
<td>Analysis of rate of force development</td>
<td>Average and peak values of rate of force development are unreliable and should be avoided. Rate of force development during specific time-bands (0-30, 0-50, 0-90 ms) are reliable and they should be used with caution.</td>
</tr>
</tbody>
</table>
References

